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Synthesis and structure of 2,2�-biphosphirenes
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The reaction of an excess of the transient terminal
phosphinidene complex [PhP→W(CO)5] with selected 1,3-
diynes at 110 �C in toluene affords the corresponding
2,2�-biphosphirene–W2(CO)10 complexes as a 1 :1 meso �
rac mixture; according to the X-ray crystal structure
analysis of one of the rac-complexes, some delocalisation
takes place within the diene sub-unit of these bi-
phosphirenes.

The phosphirene ring is now well established as one of the most
interesting carbon–phosphorus heterocycles.1 Numerous syn-
theses of this ring are available and its rich chemistry, including
its coordination chemistry with transition metals, combined
with its very peculiar stereoelectronic properties 2 make it an
attractive candidate for applications in homogeneous catalysis.3

In order to develop this potential, we have decided to launch a
programme aiming at the incorporation of the phosphirene
ring into oligomers or macrocycles. The first step in that direc-
tion consists in the preparation of the still unknown 2,2�-
biphosphirenes.4 The most versatile approach to phosphirenes
is undoubtedly the [2�1] cyclocondensation between alkynes
and electrophilic terminal phosphinidene complexes.5 Thus it
was tempting to study the condensation of these phosphinidene
complexes with 1,3-diynes. Unfortunately, both in our group 6

and in the group of Lammertsma,7 this reaction yielded first a
2-alkynyl-phosphirene, and then a 1,2-dihydro-1,2-diphosphete
resulting from the insertion of a second phosphinidene into
the conjugatively destabilized P–C(2) bond of the initial three-
membered ring (Scheme 1).

However, the reaction appeared to depend sharply on the
nature of the diyne substituent R1. In some cases [R1= Bu,7

But,7 SiMe3 (our work)], the insertion does not take place and
the reaction apparently stops at the stage of the 2-alkynyl-
phosphirene. This surprising observation led us to reinvestigate
the condensation of [PhP→W(CO)5] with these diynes at higher
temperature. Our and Lammertsma’s preliminary experiments
were carried out using the CuCl-catalyzed decomposition
of the appropriate 7-phosphanorbornadiene complex 1 as the
generating system of [PhP→W(CO)5] at 60 �C. In our new
experiments, the phosphinidene was generated from 1 at 110 �C
in boiling toluene without CuCl as the catalyst. Under these
more severe conditions, the reaction goes one step further
(Scheme 2).
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Only minor quantities of the 2-alkynyl-phosphirenes were
obtained and the main products were the 2,2�-biphosphirene
complexes 2 and 3 obtained as meso � rac-1 :1 mixtures.†
We were able to get good crystals of rac-2 and to perform their
X-ray analysis (Fig.1).‡ The structure of the phosphirene rings
of rac-2 are very similar to those already published.5 The two
rings are almost coplanar with a trans-disposition: interplane
angle 157.8�. The C(2)–C(3) bridge is very short at 1.421(5) Å.
This means that some conjugation takes place between the two
C��C double bonds. The structure of meso-3 was also obtained
(C–C bridge 1.435(5) and C��C 1.315(4) Å) but the data are only
marginally different from those of rac-2 and are not detailed
here. We are presently investigating the synthesis of higher
oligophosphirenes.

Scheme 2 Reagents and conditions: (i), (ii); toluene, 110 �C, 10–12 h,
3.2 eq. of 1 and 1 eq. of R1 C���C–C���CR1.
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2 R1= SiMe3 (50%)
3 R1= But (50%)

Fig. 1 Crystal structure of rac-2. Significant bond distances (Å) and
angles (�): W(1)–P(1) 2.484(1), W(2)–P(2) 2.501(1), P(1)–C(1) 1.826(4),
P(1)–C(2) 1.791(3), P(1)–C(5) 1.822(4), P(2)–C(3) 1.793(3), P(2)–C(4)
1.835(4), P(2)–C(11) 1.821(4), C(1)–C(2) 1.327(5), C(2)–C(3) 1.421(5),
C(3)–C(4) 1.318(5); C(2)–P(1)–C(1) 43.0(2), C(3)–P(2)–C(4) 42.6(2),
C(1)–C(2)–P(1) 69.9(2), C(2)–C(1)–P(1) 67.1(2), C(3)–C(4)–P(2)
67.0(2), C(4)–C(3)–P(2) 70.4(2), C(3)–C(2)–P(1) 147.8(3), C(2)–C(3)–
P(2) 144.7(3).
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Notes and references
† Selected analytical and spectroscopic data: 2: purified by chroma-
tography on silica gel (hexane–CH2Cl2 10 :1) meso (eluted first): 31P
NMR (CDCl3): δ �154.5, 1JP–W 257 Hz; 13C NMR (CDCl3): δ �0.92
(s, SiMe3), 128.76 (pseudo-t, 2JC–P 10.0 Hz, o-Ph), 130.91 (s, p-Ph),
131.46 (pseudo-t, 3JC–P 16.4 Hz, m-Ph), 137.9 (pseudo-s, C3C3�), 196.03
(pseudo-t, cis-CO); m/z (184W) 975 (M � 3CO � 1, 25%), 863
(M � 7CO � 1, 100), 779 (M � 10CO � 1, 90); Anal. Calc. for
C32H28O10P2Si2W2: C, 36.32; H, 2.67. Found: C, 36.58; H, 2.72%. rac:
31P NMR (CDCl3): δ �156.4, 1JP–W 264.7 Hz; 13C NMR (CDCl3):
δ �0.97 (s, SiMe3), 128.89 (pseudo-t, 2JC–P 10.4 Hz, o-Ph), 131.06 (s,
p-Ph), 131.56 (pseudo-t, 3JC–P 16.6 Hz, m-Ph), 138.09 (pseudo-s, C3C3�),
141.91 (pseudo-t, ipso-Ph), 195.91 (pseudo-t, 2JC–P 7.5 Hz, cis-CO),
197.54 (d, 2JC–P 33 Hz, trans-CO).

3: meso (eluted first): 31P NMR (CDCl3): δ �138.6; 13C NMR
(CDCl3): δ 29.51 (s, Me), 35.30 (pseudo-s, CMe3), 111.74 (pseudo-s,
C2C2�), 128.91 (pseudo-t, 2JC–P 10.5 Hz, o-Ph), 131.12 (s, p-Ph), 131.57
(pseudo-t, 3JC–P 15.8 Hz, m-Ph), 137.60 (pseudo-s, C3C3�), 196.27
(pseudo-t, cis-CO); m/z (184W) 942 (M � 3CO, 8%), 830 (M � 7CO,
36), 747 (M � 10CO � 1, 41), 562 (M � 10CO � W, 57), 292 (PhPW,
100); Anal. Calc. for C34H28O10P2W2: C, 39.79; H, 2.75. Found:
C, 40.01; H, 2.81%. rac: 31P NMR (CDCl3): δ �140.2, 1JP–W 250.7 Hz;
13C NMR (CDCl3): δ 29.71 (s, Me), 35.76 (d, 2JC–P 3.6 Hz, CMe3),
112.03 (pseudo-t, C2C2�), 129.33 (pseudo-t, 2JC–P 10.5 Hz, o-Ph), 131.55
(s, p-Ph), 132.13 (pseudo-t, 3JC–P 15.5 Hz, m-Ph), 138.09 (pseudo-s,
C3C3�), 148.50 (pseudo-t, 1JC–P 18 Hz, ipso-Ph), 196.41 (pseudo-t, 2JC–P

7.4 Hz, cis-CO).
‡ X-Ray structure determination for rac-2: crystals suitable for X-ray
diffraction were obtained from a pentane–dichloromethane solution
of the compound. Data were collected with a Nonius Kappa CCD
diffractometer. The crystal structure was solved using maXus.8 While
initial refinement was performed with the latter, final least-squares was
conducted with SHELXL 97.9 Illustrations were made using Platon.10

Crystal data. C32H28O10P2Si2W2, M = 1058.36 g mol�1, monoclinic,
a = 12.0110(2), b = 17.3150(2), c = 18.9720(3) Å, β = 104.2090(6)�, V =
3824.91(10) Å3, T = 150 K, space group P21/n, Z = 4, µ(Mo-Kα) =
6.207 cm�1. 8114 reflections measured, 7801 unique (Rint = 0.021) which
were used in all calculations. The final wR(F2) was 0.0612 (all data).

CCDC reference number 186/1519.
See http://www.rsc.org/suppdata/dt/1999/2409/ for crystallographic

files in .cif format.
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